skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poccia, Silvestro Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many applications generate and/or consume multi-variate temporal data, and experts often lack the means to adequately and systematically search for and interpret multi-variate observations. In this article, we first observe that multi-variate time series often carry localized multi-variate temporal features that are robust against noise. We then argue that these multi-variate temporal features can be extracted by simultaneously considering, at multiple scales, temporal characteristics of the time seriesalong with external knowledge, including variate relationships that are known a priori. Relying on these observations, we develop data models and algorithms to detectrobust multi-variate temporal(RMT) features that can be indexed for efficient and accurate retrieval and can be used for supporting data exploration and analysis tasks. Experiments confirm that the proposed RMT algorithm is highly effective and efficient in identifyingrobustmulti-scale temporal features of multi-variate time series. 
    more » « less